

# **Techior Solutions Pvt. Ltd.**

**HSC Maths Sample Paper** 

Total Time: 3 Hr

<u>Maths</u> Section A

# Q. 1. Select and write the correct answer for the following multiple choice type of questions :

1) If  $|\bar{a}| = 3$ ,  $|\bar{b}| = 5$ ,  $|\bar{c}| = 7$  and  $\bar{a} + \bar{b} + \bar{c} = \bar{0}$ , then the angle between  $\bar{a}$  and  $\bar{b}$  is 1

- A)  $\frac{\pi}{2}$ B)  $\frac{\pi}{3}$ C)  $\frac{\pi}{4}$ D)  $\frac{\pi}{6}$
- 2) If the equation  $3x^2 8xy + qy^2 + 2x + 14y + p = 1$  represents a pair of perpendicular lines, 1 then the values of p and q are respectively.
  - **A**) 3 and 7
  - **B**) 7 and 3
  - **C**) 3 and 7
  - **D**) 7 and 3

3)

The direction cosines of the normal to the plane 2x - y + 2z = 3 are \_\_\_\_\_ 1

- A)  $\frac{2}{3}, \frac{-1}{3}, \frac{2}{3}$
- **B**)  $\frac{-2}{3}, \frac{1}{3}, \frac{-2}{3}$
- C)  $\frac{2}{3}, \frac{1}{3}, \frac{2}{3}$ D)  $\frac{2}{3}, \frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}$

| r          | The inverse of $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is 1                                                                                                                       |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A)         | $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$                                                                                                                                           |
| B)         | $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$                                                                                                                                           |
| C)         | $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$                                                                                                                                           |
| D)         | none of these                                                                                                                                                                            |
| ]          | If $\sin^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} = \sin^{-1}\alpha$ then $\alpha = \_$                                                                                                  |
| A)         | $\frac{63}{65}$                                                                                                                                                                          |
| B)         | $\frac{62}{65}$                                                                                                                                                                          |
| C)         | $\frac{61}{65}$                                                                                                                                                                          |
| D)         |                                                                                                                                                                                          |
| ]          | If the corner points of the feasible solution are $(0, 0)$ , $(3, 0)$ , $(2, 1)$ , $\left(0, \frac{7}{3}\right)$ the maximum value <b>1</b>                                              |
| (          | of $z = 4x + 5y$ is                                                                                                                                                                      |
| <b>A</b> ) | 12                                                                                                                                                                                       |
| B)         | 13                                                                                                                                                                                       |
| C)         | $\frac{35}{3}$                                                                                                                                                                           |
| D)         | 0                                                                                                                                                                                        |
| ]<br>ł     | If $\overline{a}$ and $\overline{b}$ are unit vectors, then what is the angle between $\overline{a}$ and $\overline{b}$ for $\sqrt{3}\overline{a} - \overline{b}$ to 1 be a unit vector? |

7)

4)

5)

6)

A)

30° 45° 60° B) C)

**D**) 90°

8) If 
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, and A (adj A) = k1, then the value of k is  
A) 2  
B) -2  
C) 10  
D) -10  
Q. 2. Answer the following questions :  
9) If  $A = \{3, 5, 7, 9, 11, 12\}$ , determine the truth value of the following.  
1  $\exists x \in A$  such that  $3x + 8 > 40$   
10) State whether the following equation has a solution or not?  
1  $\cos 2\theta = \frac{1}{3}$   
11) Which of the following sentence is the statement in logic? Justify. Write down the truth value  
1 of the statement:  
If x is a whole number then  $x + 6 = 0$ .  
12) Check whether the following matrix is invertible or not:  
 $\begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 3 \\ 1 & 2 & 3 \end{pmatrix}$   
Section B  
Attempt any EIGHT of the following questions :  
1) Determine the order and degree of the following differential equation:  
 $\frac{d^2y}{dx^2} + x(\frac{dy}{dx}) + y = 2 \sin x$   
2) Let  $X \sim B(10, 0, 2)$ . Find P(X  $\le 8$ )  
2) Let  $X \sim B(10, 0, 2)$ . Find P(X  $\le 8$ )  
2) The following is the p.d.f. of r.v. X:  
 $f(x) = \frac{x}{8}$ , for  $0 < x < 4$  and  $= 0$  otherwise.

Find P (x < 1.5)

**4**)

Using derivative, prove that:

$$\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}$$

5) Evaluate the following :

$$\int_{-3}^3 \frac{x^3}{9-x^2} \cdot dx$$

6)

The displacement x of a particle a time t is given by  $x=160t-16t^2$ . Show that its velocity at t = 1 and t = 9 are equal in magnitude but opposite in directions.

7) Integrate the following w.r.t. x:

$$\frac{\left(1 + \log x\right)^2}{x}$$

8) A table of values of f, g, f' and g' is given :

| х | f(x) | g(x) | f'(x) | g'(x) |
|---|------|------|-------|-------|
| 2 | 1    | 6    | -3    | 4     |
| 4 | 3    | 4    | 5     | -6    |
| 6 | 5    | 2    | -4    | 7     |

If S(x) = g[g(x)] find S'(6).

9) Integrate the following with respect to the respective variable :

 $\frac{3-2\sin x}{\cos^2 x}$ 

10) Differentiate the following w.r.t.x:  $5^{\sin^3 x+3}$ 

11) Evaluate the following

$$\int_{-\frac{x}{2}}^{\frac{x}{2}} \log\left(\frac{2-\sin x}{2+\sin x}\right) \cdot dx$$

12)

A table of values of f, g, f' and g' is given :

|   | X | f(x) | g(x) | f'(x) | g'(x) |
|---|---|------|------|-------|-------|
|   | 2 | 1    | 6    | -3    | 4     |
|   | 4 | 3    | 4    | 5     | -6    |
| I | 6 | 5    | 2    | -4    | 7     |

If r(x) = f[g(x)] find r' (2).

2

2

2

2

2

2

2

### Section C

### Attempt any EIGHT of the following questions :

13) In the following example verify that the given expression is a solution of the corresponding 3 differential equation:

$$y = a + \frac{b}{x}; x \frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 0$$

14) A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.

**15**) Solve the following differential equation:

 $dr + (2r \cot \theta + \sin 2\theta) d\theta = 0$ 

**16**) Integrate the following functions w.r.t. x :

$$rac{x^2}{\sqrt{9-x^6}}$$

17) Differentiate the following w.r.t.x:

$$rac{\left(x^{3}-5
ight)^{5}}{\left(x^{3}+3
ight)^{3}}$$

**18)** A particle moves under the law  $t^3 + t^2 + t$ 

$$s = \frac{t}{3} - \frac{t}{2} - \frac{t}{2} + 6$$

Find (i) its velocity at the end of 4 seconds

(ii) its acceleration and displacement when its velocity is  $\frac{3}{2}$  units

**19)** Let the p.m.f . of r.v. X be

20)

21)

P (x) = 
$$\frac{3-x}{1}$$
 =0, for x = -1, 0, 1, 2 and = 0, otherwise

Calculate E(X) and Var (X).

Evaluate the following :

$$\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{x + \frac{\pi}{4}}{2 - \cos 2x} \cdot dx$$

Differentiate the following w.r.t. x :  $\cos^{-1}\left(\frac{\sqrt{3}\cos x - \sin x}{2}\right)$  3

3

3

3

3

3

- 22) Find the area of the region bounded by the following curves, X-axis and the given lines:  $y^2 = -3$ 16x, x = 0, x = 4
- Discuss the applicability of Rolle's theorem for the following functions:
  (i) f (x) = (x 1) (2x 3), x∈[1,3]
  (ii) f (x) = 2+(x 1)<sup>2</sup>, x∈[0,2]
- 24) Show that  $\frac{dy}{dx} = \frac{y}{x}$  in the following, where a and p are constants :

$$\operatorname{sec}\!\left(rac{x^5+y^5}{x^5-y^5}
ight)$$
 = a<sup>2</sup>

### Section D

## Attempt any FIVE of the following questions :

25) If  $\log y = \log (\sin x) - x^2$ , show that

$$\frac{d^2y}{dx^2} + 4x\frac{dy}{dx} + (4x^2 + 3)y = 0.$$

26) The volume of a spherical balloon being inflated changes at a constant rate. If initially its 4 radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after t seconds.

27) From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.

- **28**) Find the area of the region included between:  $y = x^2$  and the line y = 4x
- **29**) Show that the general solution of differential equation

$$\frac{dy}{dx} + \frac{y^2 + y + 1}{x^2 + x + 1} = 0$$
 is given by  $(x + y + 1) = (1 - x - y - 2xy)$ .

**30**) Solve the following differential equation:

 $\frac{dy}{dx} = \frac{2y - x}{2y + x}$ 

31) Find the equation of tangent and normal to the following curves at the indicated points 4 on them:  $2^{2}+2^{2}=0$  (1, 1)

$$2x^{2}+3y^{2}-5=0$$
 at (1, 1)

**32)** Evaluate the following integrals as limit of a sum :

4

3

3

4

4

4

4

$$\int_{0}^{4} x^2 \cdot dx$$